An algebraic approach to the Rank Support Learning problem

Magali BARDET, Pierre BRIAUD

PQCrvpto 2021. July 20-22

Code-based cryptography

Decoding problem = decoding a random linear code . . .

- In the Hamming metric
 - Well-established encryption schemes (classic McEliece, BIKE).
 - ▶ Difficult to construct evolved primitives (Wave : hash-and-sign).
- In the rank metric
 - Encryption (NIST candidates ROLLO, RQC).
 - ► Seems more flexible.

RSL for more applications in the rank metric

- IBE scheme (broken). [Gab+17]
- Durandal signature scheme. [Ara+19]
 - Adapting Schnorr-Lyubashevsky to the rank metric.

Both based on RSL = generalization of the decoding problem.

[Gab+17] Gaborit et al. "Identity-based Encryption from Rank Metric". $\underline{\mathsf{CRYPTO}}$ 2017.

1 The RSL problem

- 2 Our modeling to attack RSL
- Solving the system

4 Cryptographic impact

\mathbb{F}_{q^m} -linear codes

 $\mathbb{F}_{q^m}/\mathbb{F}_q$ finite field extension of degree m, basis $\mathcal{B}:=(\beta_1,\ldots,\beta_m)$.

\mathbb{F}_{a^m} -linear code

- \mathbb{F}_{a^m} -linear subspace $\mathcal{C} \subset \mathbb{F}_{a^m}^n$, dim. k.
- Words \leftrightarrow Matrices in $\mathbb{F}_q^{m \times n}$.

$$oldsymbol{c} := (c_1, \ldots, c_n) \leftrightarrow \mathsf{Mat}_{oldsymbol{c}} = egin{pmatrix} c_{1,1} & \cdots & c_{1,n} \ dots & \ddots & dots \ c_{m,1} & \cdots & c_{m,n} \end{pmatrix}, ext{ where } c_i := \sum_{j=1}^m c_{j,i} eta_j.$$

Support and rank weight for $oldsymbol{c} \in \mathbb{F}_{a^m}^n$

$$\mathsf{Supp}(oldsymbol{c}) := \langle c_1, \dots, c_n
angle_{\mathbb{F}_q}.$$

$$\omega(c) := \dim_{\mathbb{F}_q}(\operatorname{Supp}(c)) = \operatorname{rk}(\operatorname{Mat}_c).$$

The Rank Decoding problem (RD)

Fixed weight decoding

Given $\boldsymbol{G} \in \mathbb{F}_{q^m}^{k \times n}$ full-rank, $\boldsymbol{y} \in \mathbb{F}_{q^m}^n$, find $x \in \mathbb{F}_{q^m}^n$ s.t.

 $\omega(\mathbf{y} - \mathbf{x}\mathbf{G}) := \omega(\mathbf{e}) = r$, where \mathbf{e} is an error.

Syndrome decoding

Given $\mathbf{H} \in \mathbb{F}_{q^m}^{(n-k)\times n}$ full-rank, a syndrome $\mathbf{s} \in \mathbb{F}_{q^m}^{n-k}$ and $r \in \mathbb{N}$, find $\mathbf{e} \in \mathbb{F}_{q^m}^n$ s.t.

$$e\mathbf{H}^T = \mathbf{s}$$
 and $\omega(\mathbf{e}) = r$.

Rank Support Learning problem (RSL)

Rank Support Learning (RSL)

 $\underline{\mathsf{Input}} \colon \boldsymbol{H} \in \mathbb{F}_{q^m}^{(n-k) \times n} \text{ full-rank, } N \text{ syndromes } \boldsymbol{s}_i \in \mathbb{F}_{q^m}^{(n-k)} \text{ s.t.}$

$$orall i, \exists oldsymbol{e}_i \in \mathbb{F}_{q^m}^n, \; (oldsymbol{e}_ioldsymbol{H}^\mathsf{T} = oldsymbol{s}_i, \; \mathsf{Supp}(oldsymbol{e}_i) = \mathcal{V}),$$

where $\dim_{\mathbb{F}_q}(\mathcal{V}) = r$.

Output: the common support ${\cal V}$

This is RD when N = 1. How easier when $N \nearrow ?$

Previous cryptanalysis

Known attacks

- $N \ge nr$: polynomial (linear algebra, [Gab+17]).
- $N \ge kr$: subexponential (GB, very overdetermined system, [DAT18]).
- Any RD solver on 1 syndrome . . . the best so far when N < kr (!)
 - \rightarrow This talk : an attack for any N < kr.

[Gab+17] Gaborit et al. "Identity-based Encryption from Rank Metric". CRYPTO 2017.

 $[{\sf Ara}+19] \ {\sf Aragon\ et\ al.\ "Durandal:\ a\ rank\ metric\ based\ signature\ scheme"}.\ \underline{{\sf EUROCRYPT\ 2019}}.$

[DAT18] Debris-Alazard and Tillich. "Two attacks on rank metric code-based schemes: RankSign and an Identity-Based-Encryption-scheme". ASIACRYET 2018; 🔿

RSL-Minors modeling

 $\forall i, \ \mathbf{y}_i \mathbf{H}^{\mathsf{T}} = \mathbf{s}_i \ (\text{no weight constraint on } \mathbf{y}_i).$

$$\mathcal{C}_{\mathsf{aug}} := \mathcal{C} + \langle \boldsymbol{y}_1, \dots, \boldsymbol{y}_N \rangle_{\mathbb{F}_q} = \mathcal{C} + \langle \boldsymbol{e}_1, \dots, \boldsymbol{e}_N \rangle_{\mathbb{F}_q} := \mathcal{C} + \mathcal{E} \subset \mathbb{F}_{q^m}^n.$$

Strategy ([Gab+17])

Target : $e \in C_{aug}$, $w(e) := w \le r$ ($\approx q^N$ such words).

 \Rightarrow MinRank with km + N matrices, rank w.

$$egin{aligned} oldsymbol{e} := oldsymbol{x} oldsymbol{G} + \sum_{i=1}^N oldsymbol{\lambda}_i oldsymbol{y}_i = (eta_1, eta_2, \dots, eta_m) oldsymbol{\mathsf{Mat}}_{oldsymbol{e}} := (eta_1, eta_2, \dots, eta_m) oldsymbol{CR}. \end{aligned}$$

(Unknowns $\mathbf{x} \in \mathbb{F}_{q^m}^k$, $\lambda_i \in \mathbb{F}_q$, $\mathbf{C} \in \mathbb{F}_q^{m \times w}$ and $\mathbf{R} \in \mathbb{F}_q^{w \times n}$).

RSL-Minors modeling

Multiply by \mathbf{H}^{T} to remove the $\mathbf{x}\mathbf{G}$ term:

$$m{e}m{H}^\mathsf{T} := m{s} = \sum_{i=1}^N \pmb{\lambda}_i m{s}_i := (eta_1, eta_2, \dots, eta_m) m{C}m{R}m{H}^\mathsf{T}.$$

The matrix
$$\Delta_{m{H}} := \begin{pmatrix} \sum_{i=1}^N \lambda_i m{s}_i \\ m{R} m{H}^{\mathsf{T}} \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^N \lambda_i m{y}_i \\ m{R} \end{pmatrix} m{H}^{\mathsf{T}}$$

has rank < w!

System over \mathbb{F}_{q^m} (variables over \mathbb{F}_q)

$$\mathcal{F} := \left\{ f = 0 \middle| f \in \mathsf{MaxMinors}(\Delta_{m{H}})
ight\}.$$

$$\# ext{eqs over } \mathbb{F}_{q^m} = inom{n-k}{w+1}.$$

RSL-Minors modeling

Degree ?

Bilinear in λ_i and in the maximal minors of \mathbf{R} ($r_T = |\mathbf{R}|_{*,T}$).

- \rightarrow Sum of products $\left|\sum_{i=1}^{N} \lambda_i \mathbf{y}_i\right|_{*,I} \times \left|\mathbf{H}\right|_{J,I}$ (Cauchy-Binet formula).
- ightarrow Compute left factors by Laplace expansion along the first row.

RSL-Minors system

$$\mathcal{F}_{\mathsf{ext}} := \mathsf{Exp}_{\mathcal{B}}(\mathcal{F}) := \left\{ [\beta_i] f = 0 \mid i \in \{1..m\}, \ f \in \mathcal{F} \right\}.$$

$$\# ext{eqs over } \mathbb{F}_q = m inom{n-k}{w+1} \quad \# \{ ext{monomials } \lambda_i r_T \} = N inom{n}{w}.$$

Solving the system

- Restrict the number of solutions!
 - \rightarrow Decrease $w \leq r$ and/or shorten \mathcal{C}_{aug} .
- **Q** Multiply by monomials in λ_i + linearize at bi-degree (b,1). (as in [Bar+20])
 - \rightarrow Find b? How many independent eqs? Syzygies?
- Solve the linear system with Strassen/Wiedemann.
 - \rightarrow Very few sols, easy to recover the true RSL ones.

At bi-degree (b,1) over \mathbb{F}_{q^m} (system \mathcal{F})

Assumption 1 (cheap)

Let
$$m{S}:=\left(m{s}_{1},\ldots,m{s}_{N}
ight)\in\mathbb{F}_{q^{m}}^{(n-k) imes N}.$$
 We assume that

Rank
$$(S_{\{1..n-k-w\},*}) = n-k-w$$
.

Under Assumption 1, leading terms at bi-degree (1,1) are known.

 \Rightarrow Then construct a basis at higher bi-degree.

Theorem 1 (under Assumption 1)

Let $b \geq 1$ and $\mathcal{N}_b := \#\{\text{Lin. Indep. bi-degree } (b,1)\}$. One has

$$\mathcal{N}_b := \sum_{d=2}^{n-k-w+1} inom{n-k-d}{w-1} \sum_{j=1}^{d-1} inom{N-j+1+b-2}{b-1}.$$

Expanding over \mathbb{F}_q (system \mathcal{F}_{ext})

To be solved: $\mathcal{F}_{ext} = \mathsf{Ext}_{\mathcal{B}}(\mathcal{F})$, eqs, sols $\in \mathbb{F}_q$.

Assumption 2

Applying $Ext_{\mathcal{B}}(.)$ does not add extra linear relations.

When q=2, field equations affect the analysis for $b \ge 2$, i.e.

$$\mathcal{N}_b^{\mathbb{F}_2} := \#\{\mathsf{Lin.\ Indep.\ bi-degree}\ (b,1)\} < \mathcal{N}_b.$$

- Theorem 1 + Assumption 2:
 - \Rightarrow Find b to solve by linearization at bi-degree (b, 1).
- Dominant cost : final linear system over \mathbb{F}_q .
 - \Rightarrow Sparse linear algebra when b large enough.

Cryptographic impact

128-bit parameters constructed w.r.t. Durandal reqs. + [Bar+20].

(m,n,k,r)	Best so far (RD)	N = k(r-2)	N = k(r-1)
(277, 358, 179, 7)	130	<u>126</u>	<u>125</u>
(281, 242, 121, 8)	159	170	<u>128</u>
(293, 254, 127, 8)	152	172	<u>125</u>
(307, 274, 137, 9)	339	187	159

- Improves key-recovery on Durandal.
- The harder the RD instance, the more we might gain ?

Conclusion

- Attack to be considered to design future parameters.
- Precise complexity analysis:
 - ▶ #{Lin. Indep. Eqs} is proven (contrary to [Bar+20]).
- Further work:
 - ▶ Dealing with the q = 2 case.
 - Broader comparison to RD attacks.