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Code-based cryptography

Decoding problem = decoding a random linear code . . .

In the Hamming metric
I Well-established encryption schemes (classic McEliece, BIKE).
I Difficult to construct evolved primitives (Wave : hash-and-sign).

In the rank metric
I Encryption (NIST candidates ROLLO, RQC).
I Seems more flexible.
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RSL for more applications in the rank metric

IBE scheme (broken). [Gab+17]

Durandal signature scheme. [Ara+19]
I Adapting Schnorr-Lyubashevsky to the rank metric.

Both based on RSL = generalization of the decoding problem.

[Gab+17] Gaborit et al. “Identity-based Encryption from Rank Metric”. CRYPTO 2017.

[Ara+19] Aragon et al. “Durandal: a rank metric based signature scheme”. EUROCRYPT 2019.
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Fqm-linear codes
Fqm/Fq finite field extension of degree m, basis B := (β1, . . . , βm).

Fqm-linear code
Fqm -linear subspace C ⊂ Fn

qm , dim. k.
Words ↔ Matrices in Fm×n

q .

c := (c1, . . . , cn)↔Matc =

c1,1 · · · c1,n
... . . . ...

cm,1 · · · cm,n

 , where ci :=
m∑

j=1
cj,iβj .

Support and rank weight for c ∈ Fn
qm

Supp(c) := 〈c1, . . . , cn〉Fq .

ω(c) := dimFq (Supp(c)) = rk (Matc).

Magali Bardet, Pierre Briaud An algebraic approach to the RSL problem PQCrypto 2021, July 20-22 5 / 16



The Rank Decoding problem (RD)

Fixed weight decoding
Given G ∈ Fk×n

qm full-rank, y ∈ Fn
qm , find x ∈ Fn

qm s.t.

ω(y − xG) := ω(e) = r , where e is an error.

Syndrome decoding
Given H ∈ F(n−k)×n

qm full-rank, a syndrome s ∈ Fn−k
qm and r ∈ N, find e ∈ Fn

qm s.t.

eHT = s and ω(e) = r .
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Rank Support Learning problem (RSL)

Rank Support Learning (RSL)

Input: H ∈ F(n−k)×n
qm full-rank, N syndromes s i ∈ F(n−k)

qm s.t.

∀i ,∃e i ∈ Fn
qm , (e iHT = s i , Supp(e i ) = V),

where dimFq (V) = r .
Output: the common support V

This is RD when N = 1. How easier when N ↗ ?

Magali Bardet, Pierre Briaud An algebraic approach to the RSL problem PQCrypto 2021, July 20-22 7 / 16



Previous cryptanalysis

Known attacks
N ≥ nr : polynomial (linear algebra, [Gab+17]).
N ≥ kr : subexponential (GB, very overdetermined system, [DAT18]).
Any RD solver on 1 syndrome . . . the best so far when N < kr (!)

→ This talk : an attack for any N < kr .

[Gab+17] Gaborit et al. “Identity-based Encryption from Rank Metric”. CRYPTO 2017.

[Ara+19] Aragon et al. “Durandal: a rank metric based signature scheme”. EUROCRYPT 2019.

[DAT18] Debris-Alazard and Tillich. “Two attacks on rank metric code-based schemes: RankSign and an Identity-Based-Encryption scheme”. ASIACRYPT 2018.
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RSL-Minors modeling
∀i , y iHT = s i (no weight constraint on y i ).

Caug := C + 〈y1, . . . , yN〉Fq = C + 〈e1, . . . , eN〉Fq := C + E ⊂ Fn
qm .

Strategy ([Gab+17])
Target : e ∈ Caug ,w(e) := w ≤ r (≈ qN such words).

⇒ MinRank with km + N matrices, rank w .

e := xG +
N∑

i=1
λiy i = (β1, β2, . . . , βm)Mate := (β1, β2, . . . , βm)CR.

(Unknowns x ∈ Fk
qm , λi ∈ Fq,C ∈ Fm×w

q and R ∈ Fw×n
q ).

[Gab+17] Gaborit et al. “Identity-based Encryption from Rank Metric”. CRYPTO 2017.
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RSL-Minors modeling
Multiply by HT to remove the xG term:

eHT := s =
N∑

i=1
λis i := (β1, β2, . . . , βm)CRHT.

The matrix ∆H :=


N∑

i=1
λis i

RHT

 =


N∑

i=1
λiy i

R

HT

has rank ≤ w !

System over Fqm (variables over Fq)

F :=
{

f = 0
∣∣∣f ∈ MaxMinors(∆H)

}
.

#eqs over Fqm =
(

n − k
w + 1

)
.
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RSL-Minors modeling

Degree ?
Bilinear in λi and in the maximal minors of R (rT = |R|∗,T ).

→ Sum of products

∣∣∣∣∣∣∣
N∑

i=1
λiy i

R

∣∣∣∣∣∣∣
∗,I

×
∣∣∣H∣∣∣

J,I
(Cauchy-Binet formula).

→ Compute left factors by Laplace expansion along the first row.

RSL-Minors system

Fext := ExpB(F) := {[βi ]f = 0 | i ∈ {1..m}, f ∈ F} .

#eqs over Fq = m
(

n − k
w + 1

)
#{monomials λi rT} = N

(
n
w

)
.
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Solving the system

1 Restrict the number of solutions !
→ Decrease w ≤ r and/or shorten Caug .

2 Multiply by monomials in λi + linearize at bi-degree (b, 1). (as in [Bar+20])
→ Find b ? How many independent eqs ? Syzygies ?

3 Solve the linear system with Strassen/Wiedemann.
→ Very few sols, easy to recover the true RSL ones.

[Bar+20] Bardet et al. “Improvements of Algebraic Attacks for solving the Rank Decoding and MinRank problems”. ASIACRYPT 2020.
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At bi-degree (b, 1) over Fqm (system F)
Assumption 1 (cheap)

Let S :=
(
s1, . . . , sN

)
∈ F(n−k)×N

qm . We assume that

Rank(S{1..n−k−w},∗) = n − k − w .

Under Assumption 1, leading terms at bi-degree (1, 1) are known.
⇒ Then construct a basis at higher bi-degree.

Theorem 1 (under Assumption 1)
Let b ≥ 1 and Nb := #{Lin. Indep. bi-degree (b, 1)}. One has

Nb :=
n−k−w+1∑

d=2

(
n − k − d

w − 1

) d−1∑
j=1

(
N − j + 1 + b − 2

b − 1

)
.
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Expanding over Fq (system Fext)
To be solved: Fext = ExtB(F), eqs, sols ∈ Fq.

Assumption 2
Applying ExtB(.) does not add extra linear relations.

When q = 2, field equations affect the analysis for b ≥ 2, i.e.

N F2
b := #{Lin. Indep. bi-degree (b, 1)} < Nb.

Theorem 1 + Assumption 2:
⇒ Find b to solve by linearization at bi-degree (b, 1).

Dominant cost : final linear system over Fq.
⇒ Sparse linear algebra when b large enough.
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Cryptographic impact

128-bit parameters constructed w.r.t. Durandal reqs. + [Bar+20].

(m, n, k, r) Best so far (RD) N = k(r − 2) N = k(r − 1)
(277, 358, 179, 7) 130 126 125
(281, 242, 121, 8) 159 170 128
(293, 254, 127, 8) 152 172 125
(307, 274, 137, 9) 339 187 159

Improves key-recovery on Durandal.
The harder the RD instance, the more we might gain ?
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Conclusion

Attack to be considered to design future parameters.

Precise complexity analysis:
I #{Lin. Indep. Eqs} is proven (contrary to [Bar+20]).

Further work:
I Dealing with the q = 2 case.
I Broader comparison to RD attacks.
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